Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In 2022 we resampled normalized difference vegetation index (NDVI) along a 100 m transect in tundra near Utqiagvik, AK that had been previously measured through the 2000–2002 growing seasons, providing an opportunity to examine a 20 year NDVI change at a 1 m resolution in a region that is experiencing increased warming and precipitation over this period. Multidecadal NDVI change was spatially variable across the transect with nearly half of the transect showing greening, about a third not showing conclusive change, and about 20% browning. In wet areas, greening (increased NDVI) was associated with increased green leaf area index, while in drier areas greening was related to changes in species cover. Browning was not related to change in species cover and appeared to be due to increased coverage of standing dead material in graminoid dominated canopies. These types of detailed observations provide insights into the interpretation of satellite based NDVI trends and emphasize the importance of microtopography and hydrology in mediating vegetation change in a warming Arctic.more » « less
-
Abstract Little is known about the chlorophyll fluorescence spectra for high latitude plants. A FluoWat leaf clip was used to measure leaf-level reflectance and chlorophyll fluorescence spectra of leaves of common high latitude plants to examine general spectral characteristics of these species. Fluorescence yield (Fyield) was calculated as the ratio of the emitted fluorescence divided by the absorbed radiation for the wavelengths from 400 nm up to the wavelength of the cut-off for the FluoWat low pass filter (either 650 or 700 nm). The Fyield spectra grouped into distinctly different patterns among different plant functional types. Black spruce ( Picea mariana ) Fyield spectra had little red fluorescence, which was reabsorbed in the shoot, but displayed a distinct far-red peak. Quaking aspen ( Populus tremuloides ) had both high red and far-red Fyield peaks, as did sweet coltsfoot ( Petasites frigidus ). Cotton grass ( Eriophorum spp.) had both red and far-red Fyield peaks, but these peaks were much lower than for aspen or coltsfoot. Sphagnum moss ( Sphagnum spp.) had a distinct Fyield red peak but low far-red fluorescence. Reindeer moss lichen ( Cladonia rangiferina ) had very low fluorescence levels, although when damp displayed a small red Fyield peak. These high latitude vegetation samples showed wide variations in Fyield spectral shapes. The Fyield values for the individual red or far-red peaks were poorly correlated to chlorophyll content, however the ratio of far-red to red Fyield showed a strong correlation with chlorophyll content. The spectral variability of these plants may provide information for remote sensing of vegetation type but may also confound attempts to measure high latitude vegetation biophysical characteristics and function using solar induced fluorescence (SIF).more » « less
-
Abstract Observing the environment in the vast regions of Earth through remote sensing platforms provides the tools to measure ecological dynamics. The Arctic tundra biome, one of the largest inaccessible terrestrial biomes on Earth, requires remote sensing across multiple spatial and temporal scales, from towers to satellites, particularly those equipped for imaging spectroscopy (IS). We describe a rationale for using IS derived from advances in our understanding of Arctic tundra vegetation communities and their interaction with the environment. To best leverage ongoing and forthcoming IS resources, including National Aeronautics and Space Administration’s Surface Biology and Geology mission, we identify a series of opportunities and challenges based on intrinsic spectral dimensionality analysis and a review of current data and literature that illustrates the unique attributes of the Arctic tundra biome. These opportunities and challenges include thematic vegetation mapping, complicated by low‐stature plants and very fine‐scale surface composition heterogeneity; development of scalable algorithms for retrieval of canopy and leaf traits; nuanced variation in vegetation growth and composition that complicates detection of long‐term trends; and rapid phenological changes across brief growing seasons that may go undetected due to low revisit frequency or be obscured by snow cover and clouds. We recommend improvements to future field campaigns and satellite missions, advocating for research that combines multi‐scale spectroscopy, from lab studies to satellites that enable frequent and continuous long‐term monitoring, to inform statistical and biophysical approaches to model vegetation dynamics.more » « less
An official website of the United States government
